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Abstract

We construct a realization of the elliptic quantum algebra Uq,p(ŝlN ) for any
given level k in terms of free boson fields and their twisted partners. It
can be considered as the elliptic deformation of the Wakimoto realization
of the quantum affine algebra Uq(ŝlN ). We also construct a family of
screening currents, which commute with the currents of Uq,p(ŝlN ) up to total
q-differences. And we give explicit twisted expressions for the type I and
type II vertex operators of Uq,p(ŝlN ) by twisting the known results of the
type I vertex operators of the quantum affine algebra Uq(ŝlN ) and the new
results of the type II vertex operators of Uq(ŝlN ) we obtained in this paper.

PACS numbers: 02.20.Uw, 03.65.Fd, 12.40.Ee

1. Introduction

Infinite-dimensional symmetries, such as the Virasoro algebra (W -algebra in more general)
and affine Lie algebras, play central roles in the two-dimensional conformal field theories
(2D CFTs) [1]. For the non-conformal (off-critical) integrable theories, their roles are taken
over by the so-called quantum algebras. From the algebraic point of view, there are three
kinds of quantum algebras, according to different exchange properties, which are nominated
as rational, trigonometric and elliptic quantum algebras, respectively. The quantum algebras
of the former two kinds could be regarded as certain degenerate cases of the latter one. For
example, the quantum affine algebras (trigonometric), which are also known as the quantum
group [2, 3], and the Yangian double [4] with central (rational) can be obtained as a certain
limited case of the elliptic quantum algebras. Various versions of elliptic quantum algebras,
also called elliptic quantum groups [5–7], have been introduced to understand elliptic face
models of statistical mechanics, and in their semiclassical limit, CFT of Wess–Zumino–Witten
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(WZW) models on tori. In [8], there are more detailed discussions on applications of quantum
algebras to the 2D CFTs. Their roles are similar to the Kac–Moody algebras in WZW models.
And from the Hopf algebra point of view, the elliptic quantum groups are nothing but quantum
affine algebras equipped with a co-product different from the original one by a certain kind
of twisting, so they can be viewed as quasi-Hopf algebras in the sense of Drinfeld [9]. They
have two types which correspond to different types of integrable models: the vertex type
Aq,p(ŝlN ) and the face type Bq,λ(G), where G is a Kac–Moody algebra associated with a
symmetrizable generalized Cartan matrix [10]. The former is closely related to vertex models,
for example, the XYZ model, or equivalently, the eight-vertex model in the principal regime
[11]; while some face models, such as the Andrew–Baxter–Forrester (ABF) models [12] which
are ‘solid-on-solid’ (SOS) face models, possess symmetries corresponding to the face-type
elliptic algebras Bq,λ(G).

In mathematics, it is natural to study these algebraic objects’ structures and their
representations. In physical applications, their representations are also required. The standard
scheme to study integrable models in field theories or statistical mechanics is solving the
following basic problems: to diagonalize the given Hamiltonian and then to compute the
correlation functions. Usually, it is quite difficult to solve such problems directly. It has
been indicated that the algebraic analysis method is an extremely powerful tool for studying
solvable lattice models, especially for deriving the correlation functions. This method is based
on the infinite-dimensional quantum group symmetry possessed by a solvable lattice model
and the representation theory of such symmetry. This algebraic method could be viewed as
the quantum version of the powerful inverse scattering method [13]; see [14] for a review
on it. As a result, if one expects to perform algebraic analysis over the above two types of
elliptic lattice models, he should first study the corresponding elliptic quantum groups and
their representations.

It is of special interest for the algebra of the intertwining operators in the WZW model. It
was derived by Knizhnik and Zamolodchikov that the matrix coefficients of the intertwining
operators for the WZW model satisfy certain holonomic differential equations, i.e., the
Knizhnik–Zamolodchikov (KZ) equation [15]. In [16], for the quantum affine algebra, the
authors defined q-deformed vertex operators as certain intertwining operators and showed that
they satisfied some holonomic difference equations called the quantum KZ (qKZ) equations.
So it is also expected that the representations of the elliptic quantum algebras are helpful
in constructing the elliptic-type solutions of the quantum Knizhnik–Zamolodchikov–Bernard
(qKZB) equation, which is a higher genus extension of the qKZ equation [17].

At the classical level, there are various models of representations for the current algebras
and each of them is of significance in certain applications. Here, we just mention two
of them: the Wakimoto construction (free field realization) [18–20] and the parafermion
realization [21–23]. Recently, the explicit description of free field realizations of current
algebras has been given in [24–26]. In [27, 28], the XXZ model in the anti-ferromagnetic
regime was solved by applying the level-one representation theory of the quantum affine
algebra Uq(ŝl2). In studying a higher spin extension of the XXZ model, the realizations of
Uq(ŝl2) at level k > 1 are required, and they were constructed by several authors, such as the
Wakimoto realization in [29] and the parafermion realizations in [30, 31]. Furthermore, in
[32], the free field realization of Uq(ŝlN ) with arbitrary level k � 1 was given, and it plays
a central role in understanding the higher rank extension of the XXZ model. The Wakimoto
construction is also a powerful way to study the integrable massive field theories [33]. In
practice, free field realization, which is an infinite-dimensional extension of the Heisenberg
algebra, is quite an effective and useful approach to studying complicated algebraic structures
and their representations. The level k free field representation of Yangian double DYh̄(sl2)
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and applications in physical problems were discussed in [34, 35]. The level-one free field
realization of the Yangian double with central DYh̄(slN) was constructed in [36], while the
level k representations of DYh̄(slN) and DYh̄(glN) were given in [37]. It should also be
remarked that the Yangian double with central DYh̄(ŝl2) is the symmetry possessed by the
Sine–Gordon model, which is the field theory limit of the restricted SOS (RSOS) model
[38, 39].

It is first noticed by Lukyanov and Pugai [40] that a symmetry of the RSOS model is
generated by the q-deformation of the Virasoro algebra (q-Virasoro algebra). The free field
realizations of screening currents and vertex operators enable them to analyze the structure of
the highest weight representation of the q-Virasoro algebra. And the screening currents they
constructed satisfy an elliptic deformation of Uq(ŝl2) at level 1, which is called the elliptic
algebra Uq,p(ŝl2). In [40] the elliptic algebra is obtained by twisting the Cartan current. In
some sense, we say that the elliptic algebra at level 1 governs the structure of the q-Virasoro
algebra. It seems true that it also holds for their higher rank extensions. So following this
approach and the above-mentioned expectations, it is important to obtain the realizations of the
elliptic quantum algebras. In fact, for studying the RSOS model and its higher spin extension
(i.e. the k-fusion RSOS model), the representations of Uq,p(ŝl2) with any given level k have
been presented in [41] and [42]. They are different from each other. The former can be
viewed as the elliptic version of the parafermionic realization, which is obtained by twisting
the parafermionic realization of the quantum affine algebra Uq(ŝl2); and the latter is the elliptic
deformation of the Wakimoto realization. The elliptic algebra Uq,p(ŝl2) is actually the Drinfeld
realization of Bq,λ(ŝl2) showed in [43]. Furthermore, in order to study a higher rank extension
of the RSOS model, we should construct the realizations of Uq,p(ŝlN ). It can be viewed as the
Drinfeld realization of the face-type elliptic algebra Bq,λ(ŝlN ) showed in [43, 44]. However
only in the level-one case, the parafermion realization of it was given in [44]. And it cannot
be extended to the higher level k, although parafermion theory is important in physics [21–23]
and in mathematics [45]. The realizations of [41, 44] are based on the facts that in the ŝu(2)k

case, the parafermions are decoupled from the Cartan current, while in the ŝu(N)1 case, the
parafermions become trivial (i.e. identity operator). In fact, the bosonization of non-local
currents for higher rank and higher level algebras is a huge project even in the classical level.
So if one wants to deal with the elliptic quantum algebra of higher rank through bosonization
of the non-local currents, it will not be a practical way. In this paper, we will introduce a new
way to construct the free field representation of the higher rank algebra Uq,p(ŝlN ). It is the
higher rank generalization of the construction in [42]. And our construction could be viewed
as a twisted version of the quantum semi-infinite flag manifolds [19].

In the free field approach, there are two necessary ingredients that one has to discuss:
screening currents and vertex operators (VOs). They all play crucial roles in calculating
correlation functions and investigating the irreducible representations. The screening currents
commute or anti-commute with the currents of Uq,p(ŝlN ) up to a total q-difference of some
fields. And for this algebra, there are two kinds of VOs with distinct physical applications: the
type I VOs and the type II VOs. The former is a local operator which describes the operation
of adding one lattice site, and the formula of the correlation functions can be expressed as
traces of the product of these operators over irreducible representation space; while the latter
plays the role of particle creation or annihilation operators. In this paper, we also construct the
free field realization of these two important objects. In fact, they are all obtained by twisting
the corresponding ones of the quantum affine algebra Uq(ŝlN ). In order to do that, we have
to construct the type II VOs of Uq(ŝlN ) which have never been given before. In fact, even for
the classical affine algebra, the type II VOs of it are unknown.
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In section 2 of this paper, we define the Drinfeld realization of Uq,p(ŝlN ) as a certain
tensor product of the quantum affine algebra Uq(ŝlN ) and a Heisenberg algebra, which is
different from those given in [43, 44]. With this definition, it is more convenient to construct
the free field representation of Uq,p(ŝlN ) with given level k. And in section 3, we will present
the construction in two steps. In section 4 a series of screening currents of Uq,p(ŝlN ) are given.
In section 5, the explicit expressions of the type II VOs of Uq(ŝlN ) and the two types VOs of
Uq,p(ŝlN ) are presented.

2. The elliptic quantum algebra Uq, p(ŝlN )

There are two types of the elliptic quantum algebras: the face type and the vertex type. Here
we only consider the face-type elliptic algebra Uq,p(ŝlN ), which can be viewed as the Drinfeld
realization of the face-type elliptic quantum group Bq,λ(ŝlN ). Usually, we can also consider it
as the tensor product of the quantum affine algebra Uq(ŝlN ) and a Heisenberg algebra. In this
section, we will first review the definition of Uq(ŝlN ); then we will define the elliptic currents
of it; lastly, we give the definition of the elliptic algebra Uq,p(ŝlN ). Throughout this paper, we
fix a complex number q �= 0, |q| < 1.

2.1. The quantum affine algebra Uq(ŝlN )

In this subsection, for convenience, we give a review of the definition of Uq(ŝlN ). We will use
the standard symbol [n]:

[n] = qn − q−n

q − q−1
,

and let A = (aij )1�i,j�N−1 be the Cartan matrix of slN. The dual Coxeter number of it is
denoted by h∨ and h∨ = N .

Definition 1. Uq(ŝlN ) is the associative algebra over C with Drinfeld generators Hi
n

(n ∈ Z − {0}), e±,i
n (n ∈ Z), hi (i = 1, . . . , N − 1) and the central element c satisfying the

following defining relations:[
hi,H

j
n

] = 0,
[
hi, e

±,j
n

] = ±aij e
±,j
n (2.1)[

Hi
n,H

j
m

] = [aijn][cn]

n
δn+m,0, (2.2)

[
Hi

n, e
±,j
m

] = ± [aijn]

n
q∓ c

2 ne
±,j
n+m, (2.3)

[
e+,i
n , e−,j

m

] = δij

q − q−1

(
q

c
2 (n−m)ψi

+,n+m − q− c
2 (n−m)ψi

−,n+m

)
, (2.4)[

e
±,i
n+1, e

±,j
m

]
q

±aij +
[
e
±,j

m+1, e
±,i
n

]
q

±aij = 0, (2.5)[
e±,i
n , e±,j

m

] = 0 for aij = 0, (2.6)[
e±,i
n ,

[
e±,i
m , e

±,j

l

]
q∓1

]
q±1 +

[
e±,i
m ,

[
e±,i
n , e

±,j

l

]
q∓1

]
q±1 = 0 for aij = −1, (2.7)

where ψi
±,n are defined by∑

n∈Z

ψi
±,nz

−n = q±hi exp

(
±(q − q−1)

∑
±n>0

Hi
nz

−n

)
,

and the symbol [A,B]x for x ∈ C denotes AB − xBA.
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If we introduce the generating functions ψi
±(z) and e±,i (z) (i = 1, . . . , N − 1) as

ψi
±(z) =

∑
n∈Z

ψi
±,nz

−n, e±,i (z) =
∑
n∈Z

e±,i
n z−n−1,

which are called the Drinfeld currents of Uq(ŝlN ). In terms of them, the above defining
relations (2.1)–(2.7) can be recast as[
ψi

±(z), ψ
j
±(w)

] = 0, (2.8)

(z − qaij −cw)(z − q−aij +cw)ψi
+(z)ψ

j
−(w)

= (z − qaij +cw)(z − q−aij −cw)ψ
j
−(w)ψi

+(z), (2.9)

(z − q±(aij − c
2 )w)ψi

+(z)e
±,j (w) = (q±aij z − q∓ c

2 w)e±,j (w)ψi
+(z), (2.10)

(z − q±(aij − c
2 )w)e±,j (z)ψi

−(w) = (q±aij z − q∓ c
2 w)ψi

−(w)e±,j (z), (2.11)

[e+,i (z), e−,j (w)] = δij

(q − q−1)zw

(
δ(qcw/z)ψi

+(q
c
2 w) − δ(q−cw/z)ψi

−
(
q− c

2 w
))

, (2.12)

(z − q±aij w)e±,i (z)e±,j (w) = (q±aij z − w)e±,j (w)e±,i (z), (2.13)

e±,i (z)e±,j (w) = e±,j (w)e±,i (z) for aij = 0, (2.14)

e±,i (z1)e
±,i (z2)e

±,j (w) − [2]e±,i (z1)e
±,j (w)e±,i (z2) + e±,j (w)e±,i (z1)e

±,i (z2)

+ (replacement : z1 ↔ z2) = 0 for aij = −1, (2.15)

where δ(x) = ∑
n∈Z xn.

2.2. The elliptic algebra Uq,p(ŝlN )

The elliptic algebra Uq,p(ŝlN ) can be considered as the tensor product of the elliptic currents
of Uq(ŝlN ) and a Heisenberg algebra [43]. We first give the elliptic currents of Uq(ŝlN ). A
pair of parameters p and p∗ will be used:

p = q2r , p∗ = q2r∗ = pq−2c (r∗ = r − c; r, r∗ ∈ R>0).

Let us define the currents D±
i (z; r, r∗) ∈ Uq(ŝlN ) (i = 1, . . . , N − 1) depending on r and

r∗ as

D+
i (z; r, r∗) = exp

(∑
n>0

1

[r∗n]
Hi

−nq
(r∗+ c

2 )nzn

)
,

D−
i (z; r, r∗) = exp

(
−

∑
n>0

1

[rn]
Hi

nq
(r− c

2 )nz−n

)
,

which are different from those in [43, 44] by a power of q. Using them we can define the
‘dressed’ currents �±

i (z), ei(z) and fi(z) (i = 1, . . . , N − 1) as

�+
i (z) = D+

i (q
c
2 z; r, r∗)ψi

+(z)D
−
i (q− c

2 z; r, r∗),

�−
i (z) = D+

i (q− c
2 z; r, r∗)ψi

−(z)D−
i (q

c
2 z; r, r∗),

ei(z) = D+
i (z; r, r∗)e+,i (z),

fi(z) = e−,i (z)D−
i (z; r, r∗).
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Obviously, these currents all depend on the parameter p. Moreover, applying (2.8)–(2.15)
we have the following proposition by the direct calculation.

Proposition 1. The fields �±
i (z), ei(z) and fi(z) (i = 1, . . . , N − 1) defined above satisfy

the following elliptic commutation relations:

�±
i (z)�±

j (w) = �p

(
q−aij z

w

)
�p∗

(
qaij z

w

)
�p

(
qaij z

w

)
�p∗

(
q−aij z

w

)�±
j (w)�±

i (z), (2.16)

�+
i (z)�−

j (w) = �p

(
pq−aij −c z

w

)
�p∗

(
p∗qaij +c z

w

)
�p

(
pqaij −c z

w

)
�p∗

(
p∗q−aij +c z

w

)�−
j (w)�+

i (z), (2.17)

�±
i (z)ej (w) = q−aij

�p∗
(
q± c

2 +aij z
w

)
�p∗

(
q± c

2 −aij z
w

)ej (w)�±
i (z), (2.18)

�±
i (z)fi(w) = qaij

�p

(
q∓ c

2 −aij z
w

)
�p

(
q∓ c

2 +aij z
w

) fi(w)�±
i (z), (2.19)

[ei(z), fj (w)] = δij

(q − q−1)zw

(
δ

(
q−c z

w

)
�+

i (q
c
2 w) − δ

(
qc z

w

)
�−

i

(
q− c

2 w
))

, (2.20)

ei(z)ej (w) = q−aij
�p∗

(
qaij z

w

)
�p∗

(
q−aij z

w

)ej (w)ei(z), (2.21)

fi(z)fj (w) = qaij
�p

(
q−aij z

w

)
�p

(
qaij z

w

) fj (w)fi(z), (2.22)

(
p∗q2 z2

z1
;p∗)

∞(
p∗q−2 z2

z1
;p∗)

∞

{
ej (w)ei(z1)ei(z2)

− [2]

(
p∗q z1

w
;p∗)

∞
(
p∗q−1 w

z1
;p∗)

∞(
p∗q−1 z1

w
;p∗)

∞
(
p∗q w

z1
;p∗)

∞
ei(z1)ej (w)ei(z2)

+

(
p∗q z1

w
;p∗)

∞
(
p∗q−1 w

z1
;p∗)

∞(
p∗q−1 z1

w
;p∗)

∞
(
p∗q w

z1
;p∗)

∞

(
p∗q z2

w
;p∗)

∞
(
p∗q−1 w

z2
;p∗)

∞(
p∗q−1 z2

w
;p∗)

∞
(
p∗q w

z2
;p∗)

∞
ei(z1)ei(z2)ej (w)

}
+ (replacement : z1 ↔ z2) = 0 for |i − j | � 1, (2.23)(

pq−2 z2
z1

;p
)
∞(

pq2 z2
z1

;p
)
∞

{
fj (w)fi(z1)fi(z2)

− [2]

(
pq w

z1
;p

)
∞

(
pq−1 z1

w
;p

)
∞(

pq−1 w
z1

;p
)
∞

(
pq z1

w
;p

)
∞

fi(z1)fj (w)fi(z2)

+

(
pq w

z1
;p

)
∞

(
pq−1 z1

w
;p

)
∞(

pq−1 w
z1

;p
)
∞

(
pq z1

w
;p

)
∞

(
pq w

z2
;p

)
∞

(
pq−1 z2

w
;p

)
∞(

pq−1 w
z2

;p
)
∞

(
pq z2

w
;p

)
∞

fi(z1)fi(z2)fj (w)

}
+ (replacement : z1 ↔ z2) = 0 for |i − j | � 1, (2.24)

where we use the elliptic theta function �t(z) for any parameter t = q2ν (ν ∈ C) defined as

�t(z) = (z; t)∞(tz−1; t)∞(t; t)∞,

6
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in which

(z; t1, . . . , tk)∞ =
∏

n1,...,nk�0

(
1 − zt

n1
1 · · · tnk

k

)
.

Here these ‘dressed’ currents �±
i (z), ei(z) and fi(z) (i = 1, . . . , N − 1) are called the

elliptic currents of Uq(ŝlN ) since they obey the above elliptic commutation relations.
Next, we need a set of Heisenberg algebras generated by Pi,Qi (i = 1, . . . , N − 1) with

[Pi,Qj ] = −aij

2
,

to add nice periodicity properties to the elliptic exchange relations (2.16)–(2.24). And the
Heisenberg algebras commute with Uq(ŝlN ). For convenience, the following parametrization
will be used in the following sections:

q = e−π i/rτ ,

p = e−2π i/τ , p∗ = e−2π i/τ ∗

z = q2u = e−2π iu/rτ .

With them, we can further define the currents H±
i (u), Ei(u) and Fi(u) (i = 1, . . . , N −1)

as follows:

H±
i (u) = �±

i (z) e2Qi q∓hi (q±(r− c
2 )z)

(hi +Pi−1)

r
− (Pi−1)

r∗ ,

Ei(u) = ei(z) e2Qi z− (Pi−1)

r∗ ,

Fi(u) = fi(z)z
(hi +Pi−1)

r .

They are actually the tensor product of elliptic currents �±
i (z), ei(z) and fi(z) with the

Heisenberg algebras. And to distinguish them from the elliptic currents, we call them the total
currents. It should be noted that the choice of the zero modes in H±

i (u), Ei(u) and Fi(u)

is different from that given in [43, 44]. Our choice makes our construction of the free field
realization of Uq,p(ŝlN ) more convenient . Now the definition of Uq,p(ŝlN ) can be stated
explicitly as.

Definition 2. The elliptic algebra Uq,p(ŝlN ) is isomorphic to the associative algebra over
C generated by H±

i (u), Ei(u) and Fi(u) (i = 1, . . . , N − 1) with the following defining
relations:

H±
i (u)H±

j (v) = θr

(
u − v − aij

2

)
θr

(
u − v + aij

2

) θr∗
(
u − v + aij

2

)
θr∗

(
u − v − aij

2

)H±
j (v)H±

i (u), (2.25)

H +
i (u)H−

j (v) = θr

(
u − v − c

2 − aij

2

)
θr

(
u − v − c

2 + aij

2

) θr∗
(
u − v + c

2 + aij

2

)
θr∗

(
u − v + c

2 − aij

2

)H−
j (v)H +

i (u), (2.26)

H±
i (u)Ej (v) = θr∗

(
u − v ± c

4 + aij

2

)
θr∗

(
u − v ± c

4 − aij

2

)Ej(v)H±
i (u), (2.27)

H±
i (u)Fj (v) = θr

(
u − v ∓ c

4 − aij

2

)
θr

(
u − v ∓ c

4 + aij

2

) Fj (v)H±
i (u), (2.28)

[Ei(u), Fj (v)] = δij

(q − q−1)zw

(
δ

(
u − v − c

2

)
H +

i

(
u − c

4

)
− δ

(
u − v +

c

2

)
H−

i

(
v − c

4

))
, (2.29)

7
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Ei(u)Ej (v) = θr∗
(
u − v + aij

2

)
θr∗

(
u − v − aij

2

)Ej(v)Ei(u), (2.30)

Fi(u)Fj (v) = θr

(
u − v − aij

2

)
θr

(
u − v + aij

2

) Fj (v)Fi(u), (2.31)

z
− 2

r∗
1

(
p∗q2 z2

z1
;p∗)

∞(
p∗q−2 z2

z1
;p∗)

∞

{
Ej(u)Ei(u1)Ei(u2)

− [2]

(
z

z1

) aij

r∗
(
p∗qaij z

z1
;p∗)

∞
(
p∗q−aij z1

z
;p∗)

∞(
p∗q−aij z

z1
;p∗)

∞
(
p∗qaij z1

z
;p∗)

∞
Ei(u1)Ej (u)Ei(u2)

+

(
z

z1

) aij

r∗
(

z

z2

) aij

r∗
(
p∗qaij z

z1
;p∗)

∞
(
p∗q−aij z1

z
;p∗)

∞(
p∗q−aij z

z1
;p∗)

∞
(
p∗qaij z1

z
;p∗)

∞

×
(
p∗qaij z

z2
;p∗)

∞
(
p∗q−aij z2

z
;p∗)

∞(
p∗q−aij z

z2
;p∗)

∞
(
p∗qaij z2

z
;p∗)

∞
Ei(u1)Ei(u2)Ej (u)

}
+ (replacement : z1 ↔ z2) = 0 for |i − j | � 1, (2.32)

z
2
r

1

(
pq−2 z2

z1
;p

)
∞(

pq2 z2
z1

;p
)
∞

{
Fj (u)Fi(u1)Fi(u2)

− [2]

(
z

z1

)− aij

r

(
pq−aij z

z1
;p

)
∞

(
pqaij z1

z
;p

)
∞(

pqaij z
z1

;p
)
∞

(
pq−aij z1

z
;p

)
∞

Fi(u1)Fj (u)Fi(u2)

+

(
z

z1

)− aij

r
(

z

z2

)− aij

r

(
pq−aij z

z1
;p

)
∞

(
pqaij z1

z
;p

)
∞(

pqaij z
z1

;p
)
∞

(
pq−aij z1

z
;p

)
∞

×
(
pq−aij z

z2
;p

)
∞

(
pqaij z2

z
;p

)
∞(

pqaij z
z2

;p
)
∞

(
pq−aij z2

z
;p

)
∞

Fi(u1)Fi(u2)Fj (u)

}
+ (replacement : z1 ↔ z2) = 0 for |i − j | � 1, (2.33)

where the notations of the Jacobi theta functions θν(u) for ν ∈ C are used,

θν(u) = q
u2

ν
−u �q2ν (q2u)

(q2ν; q2ν)3∞
.

Note that we have used the parametrization z = q2u, w = q2v and zi = q2ui (i = 1, 2) in
the above expressions. In the following, we will use this parametrization without mentioning
them if they are not confused. It is easy to see that the above relations (2.25)–(2.33) have good
periodicity properties because of the quasi-periodicity property of the Jacobi theta functions,
such as

θr(u + r) = −θr(u), θr(u + rτ ) = −e−πτ i−2π iu/rθr (u)

and similar relations hold for θr∗(u) with r replaced by r∗.

3. Free field realization of Uq, p(ŝlN )

The level k representation of Uq,p(ŝlN ) has not been given before. Although the free field
realization of it in level 1 was given in [44], it cannot be generalized to the higher level case.
In this section, by using a new method, we will construct a free boson realization of Uq,p(ŝlN )

8
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with given level k. This method was used to construct a free field realization of Uq,p(ŝl2)k in
[42]. Here we will show that it can be generalized to the higher rank case. The method is
to twist the level k Wakimoto realization of Uq(ŝlN ) by constructing some ‘twising’ currents.
We will first fix some conventions and review the Wakimoto realization of Uq(ŝlN ) in [32],
then we will give our construction in two steps: the first one is the bosonization of the elliptic
currents of Uq(ŝlN ), and the second one is the free boson realization of the total currents.

3.1. Notations

We introduce a quantum Heisenberg algebra Hq,k with the generators: ai
n, p

i
a, q

i
a for

1 � i � N − 1; b
ij
n , p

ij

b , q
ij

b and c
ij
n , p

ij
c , q

ij
c for 1 � i < j � N , where n ∈ Z�=0, and

the defining relations are as follows:[
ai

n, a
j
m

] = [(k + h∨)n][aijn]

n
δn+m,0,

[
pi

a, q
j
a

] = aij (k + h∨),[
bij

n , bi ′j ′
m

] = − [n]2

n
δii ′δjj ′

δn+m,0,
[
p

ij

b , q
i ′j ′
b

] = −δii ′δjj ′
,[

cij
n , ci ′j ′

m

] = [n]2

n
δii ′δjj ′

δn+m,0,
[
pij

c , qi ′j ′
c

] = δii ′δjj ′
,

and the others vanish. Using them, we set the generating functions ai(z;α) for α ∈ C and
ai

±(z) (1 � i � N − 1) by

ai(z;α) = −
∑
n�=0

ai
n

[n]
q−α|n|z−n + qi

a + pi
a ln z,

ai
±(z) = ±

(
(q − q−1)

∑
n>0

ai
±nz

∓n + pi
a ln q

)
and ai(z; 0) ≡ ai(z) for simplicity. Similarly, the generating functions bi,j (z;α), b

i,j
± (z) and

ci,j (z;α), c
i,j
± (z) for 1 � i < j � N can also be given. These generating functions can be

viewed as some free bosonic fields, if we consider the generators of Hq,k as the modes of
N2 − 1 free bosons: ai (1 � i � N − 1), bij and cij (1 � i < j � N). We also define the
completion Ĥq,k of Hq,k as

Ĥq,k = lim← Hq,k/In, n > 0,

where In is the left ideal of Hq,k generated by all the polynomials in {ai
m(1 � i � N − 1), b

ij
m

and c
ij
m(1 � i < j � N) : m > 0} of degree greater than or equal to n (here we set

deg
(
ai

m

) = deg
(
b

ij
m

) = deg
(
c
ij
m

) = m). The normal order prescription : : is set by moving
ai

n(n > 0) and pi
a to the right, while moving ai

n(n < 0) and qi
a to the left. For example,

: exp(ai(z)) := exp

(
−

∑
n<0

ai
n

[n]
z−n

)
eqi

a zpi
a exp

(
−

∑
n>0

ai
n

[n]
z−n

)
.

In terms of the above free bosonic fields, we can define a homomorphism hq,k from the
algebra Uq(ŝlN ) to Ĥq,k . It is defined on the generators by

hq,k

(
ψi

±(z)
) =: exp

(
i∑

j=1

(
b

j,i+1
±

(
q±( k

2 +j−1)z
) − b

j,i
±

(
q±( k

2 +j)z
))

+ ai
±
(
q± h∨

2 z
)

+
N∑

j=i+1

(
b

i,j
±

(
q±( k

2 +j)z
) − b

i+1,j
±

(
q±( k

2 +j−1)z
)))

:, (3.1)
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hq,k(e
+,i (z)) = −1

(q − q−1)z

i∑
j=1

: exp((b + c)j,i(qj−1z))

× (
exp

(
b

j,i+1
+ (qj−1z) − (b + c)j,i+1(qj z)

)
− exp

(
b

j,i+1
− (qj−1z) − (b + c)j,i+1(qj−2z)

))
× exp

(
j−1∑
l=1

(
bl,i+1

+ (ql−1z) − bl,i
+ (qlz)

))
:, (3.2)

hq,k(e
−,i (z)) = −1

(q − q−1)z

(
i−1∑
j=1

: exp((b + c)j,i+1(q−(k+j)z))

× (
exp

(−b
j,i
− (q−(k+j)z) − (b + c)j,i(q−(k+j−1)z)

)
− exp

(−b
j,i
+ (q−(k+j)z) − (b + c)j,i(q−(k+j+1)z)

))
× exp

(
i∑

l=j+1

(
b

l,i+1
− (q−(k+l−1)z) − b

l,i
− (q−(k+l)z)

)
+ ai

−
(
q− k+h∨

2 z
)

+
N∑

l=i+1

(
b

i,l
− (q−(k+l)z) − b

i+1,l
− (q−(k+l−1)z)

))
:

+ : exp((b + c)i,i+1(q−(k+i)z))

× exp

(
ai

−
(
q− k+h∨

2 z
)

+
N∑

l=i+1

(
b

i,l
− (q−(k+l)z) − b

i+1,l
− (q−(k+l−1)z)

))
:

− : exp((b + c)i,i+1(qk+iz))

× exp

(
ai

+

(
q

k+h∨
2 z

)
+

N∑
l=i+1

(
bi,l

+ (qk+lz) − bi+1,l
+ (qk+l−1z)

))
:

−
N∑

j=i+2

: exp((b + c)i,j (qk+j−1z))

× (
exp

(
b

i+1,j
+ (qk+j−1z) − (b + c)i+1,j (qk+j z)

)
− exp

(
b

i+1,j
− (qk+j−1z) − (b + c)i+1,j (qk+j−2z)

))
× exp

(
ai

+

(
q

k+h∨
2 z

)
+

N∑
l=j

(
bi,l

+ (qk+lz) − bi+1,l
+ (qk+l−1z)

))
:

)
. (3.3)

Then we have the following proposition followed from [32].

Proposition 2. hq,k

(
ψi

±(z)
)

and hq,k(e
±,i (z)) (i = 1, . . . , N − 1) with k = c satisfy the

commutation relations (2.8)–(2.15).
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As a result, when k �= −h∨, this homomorphism hq,k gives the Wakimoto realization
of the quantum affine algebra Uq(ŝlN ) with k = c. In the following subsections, we will
construct the free field realization of the elliptic algebra Uq,p(ŝlN ) by twisting this realization.

3.2. Bosonization of elliptic currents

In this subsection, we show the first step of our construction: giving the bosonization of
the elliptic currents �±

i (z), ei(z) and fi(z) (i = 1, . . . , N − 1) of Uq(ŝlN ). For brevity, in
what follows we will use the same notations for the elements of Uq(ŝlN ) and their images
in the completion of Hq,k . Here we need to introduce some new currents D±

i (z; r, r∗)
(i = 1, . . . , N − 1) depending on parameters r and r∗ as

D+
i (z; r, r∗) = exp

{∑
n>0

1

[r∗n]

(
ai

−nq
− k+h∨

2 n +
i∑

j=1

(
b

j,i+1
−n q−(k+j−1)n − b

j,i
−nq

−(k+j)n
)

+
N∑

j=i+1

(
b

i,j
−nq

−(k+j)n − b
i+1,j
−n q−(k+j−1)n

))
qrnzn

}

D−
i (z; r, r∗) = exp

{
−

∑
n>0

1

[rn]

(
ai

nq
− k+h∨

2 n

+
i∑

j=1

(
bj,i+1

n q−(k+j−1)n − bj,i
n q−(k+j)n

)
+

N∑
j=i+1

(
bi,j

n q−(k+j)n − bi+1,j
n q−(k+j−1)n

))
qrnz−n

}
,

which are nominated as twisting currents; then we have the following lemma.

Lemma 1. The currents D±
i (z; r, r∗) (i = 1, . . . , N − 1) and the fields in equations (3.1)–

(3.3) satisfy the following commutation relations:

D+
i (z; r, r∗)D−

j (w; r, r∗) =
(
pq−aij −k z

w
;p

)
∞(

pqaij −k z
w
;p

)
∞

(
p∗qaij +k z

w
;p∗)

∞(
p∗q−aij +k z

w
;p∗)

∞
D−

j (w; r, r∗)D+
i (z; r, r∗),

(3.4)

D±
i (z; r, r∗)D±

j (w; r, r∗) = D±
j (w; r, r∗)D±

i (z; r, r∗), (3.5)

D+
i (z; r, r∗)ψj

+ (w) =
(
pq−aij − k

2
z
w
;p∗)

∞(
pqaij − k

2
z
w
;p∗)

∞

(
p∗qaij − k

2
z
w
;p∗)

∞(
p∗q−aij − k

2
z
w
;p∗)

∞
ψ

j
+ (w)D+

i (z; r, r∗), (3.6)

D+
i (z; r, r∗)ψj

−(w) = ψ
j
−(w)D+

i (z; r, r∗), (3.7)

D+
i (z; r, r∗)e+,j (w) =

(
p∗qaij z

w
;p∗)

∞(
p∗q−aij z

w
;p∗)

∞
e+,j (w)D+

i (z; r, r∗), (3.8)

D+
i (z; r, r∗)e−,j (w) =

(
p∗q−aij +k z

w
;p∗)

∞(
p∗qaij +k z

w
;p∗)

∞
e−,j (w)D+

i (z; r, r∗), (3.9)

D−
i (z; r, r∗)ψj

+ (w) = ψ
j
+ (w)D−

i (z; r, r∗), (3.10)

11
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D−
i (z; r, r∗)ψj

−(w) =
(
pqaij + k

2
w
z
;p

)
∞(

pq−aij + k
2

w
z
;p

)
∞

(
p∗q−aij + k

2
w
z
;p

)
∞(

p∗qaij + k
2

w
z
;p

)
∞

ψ
j
−(w)D−

i (z; r, r∗), (3.11)

D−
i (z; r, r∗)e+,j (w) =

(
pq−aij −k w

z
;p

)
∞(

pqaij −k w
z
;p

)
∞

e+,j (w)D−
i (z; r, r∗), (3.12)

D−
i (z; r, r∗)e−,j (w) =

(
pqaij w

z
;p

)
∞(

pq−aij w
z
;p

)
∞

e−,j (w)D−
i (z; r, r∗). (3.13)

Proof. A straightforward but lengthy operator product expansion (OPE) calculation verifies
this lemma. Here, we only take the first one as an example. It is obvious to see that

D+
i (z; r, r∗)D−

j (w; r, r∗) =: D+
i (z; r, r∗)D−

j (w; r, r∗) :;
and using the following formulae:

eAeB = e[A,B]eBeA, if [A,B] commute with A and B;

exp

(
−

∑
n>0

xn

n

)
= 1 − x;

(1 − x)−1 =
∑
n�0

xn,

we can prove the following relations for three cases: j = i, |j − i| = 1 and |j − i| � 2:

D−
j (w; r, r∗)D+

i (z; r, r∗) =
(
pqaij −k z

w
;p

)
∞(

pq−aij −k z
w
;p

)
∞

(
p∗q−aij +k z

w
;p∗)

∞(
p∗qaij +k z

w
;p∗)

∞
: D−

j (w; r, r∗)D+
i (z; r, r∗):,

then we obtain (3.4) since

: D+
i (z; r, r∗)D−

j (w; r, r∗) :=: D−
j (w; r, r∗)D+

i (z; r, r∗) : .

The others can be proved similarly. �

Now twisting the free boson realization (3.1)–(3.3) of Uq(ŝlN ) with D±
i (z; r, r∗), we have

free bosonic fields �±
i (z), ei(z) and fi(z) (i = 1, . . . , N − 1) given by

�+
i (z) = D+

i

(
q

k
2 z; r, r∗)ψi

+(z)D
−
i

(
q− k

2 z; r, r∗), (3.14)

�−
i (z) = D+

i

(
q− k

2 z; r, r∗)ψi
−(z)D−

i

(
q

k
2 z; r, r∗), (3.15)

ei(z) = D+
i (z; r, r∗)e+,i (z), (3.16)

fi(z) = e−,i (z)D−
i (z; r, r∗); (3.17)

then applying lemma 1 and proposition 2, we can obtain the following theorem.

Theorem 1. The fields (3.14)–(3.17) with k = c satisfy the elliptic commutation relations
(2.16)–(2.24) in proposition 1.

Proof. For example, we just prove (2.16). By (3.14),

�+
i (z)�+

j (w) = D+
i

(
q

k
2 z; r, r∗)ψi

+(z)D
−
i

(
q− k

2 z; r, r∗)D+
j

(
q

k
2 w; r, r∗)ψj

+ (w)D−
j

(
q− k

2 w; r, r∗);
12
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using proposition 2 and (3.4)–(3.6) in lemma 1,

ψi
+(z)ψ

j
+ (w) = ψ

j
+ (w)ψi

+(z),

D+
i

(
q

k
2 z; r, r∗)D−

j

(
q− k

2 w; r, r∗) =
(
pq−aij z

w
;p

)
∞

(
p∗qaij +2k z

w
;p∗)

∞(
pqaij z

w
;p

)
∞

(
p∗q−aij +2k z

w
;p∗)

∞
×D−

j

(
q− k

2 w; r, r∗)D+
i

(
q

k
2 z; r, r∗),

D+
i

(
q

k
2 z; r, r∗)ψj

+ (w) = (pq−aij z/w;p∗)∞(p∗qaij z/w;p∗)∞
(pqaij z/w;p∗)∞(p∗q−aij z/w;p∗)∞

ψ
j
+ (w)D+

i

(
q

k
2 z; r, r∗),

we obtain

�+
i (z)�+

j (w)

= (pq−aij z/w;p)∞(pqaij w/z;p)∞(p∗qaij z/w;p∗)∞(p∗q−aij w/z;p∗)∞
(pqaij z/w;p)∞(pq−aij w/z;p)∞(p∗q−aij z/w;p∗)∞(p∗qaij w/z;p∗)∞

�+
j (w)�+

i (z);
moreover, since the following identity holds:

(pq−aij z/w;p)∞(p∗qaij z/w;p∗)∞
(pqaij z/w;p)∞(p∗q−aij z/w;p∗)∞

= (q−aij z/w;p)∞(qaij z/w;p∗)∞
(qaij z/w;p)∞(q−aij z/w;p∗)∞

,

the commutation relation (2.16) is obtained:

�+
i (z)�+

j (w) =
(
q−aij z

w
;p

)
∞

(
pqaij w

z
;p

)
∞

(
qaij z

w
;p∗)

∞
(
p∗q−aij w

z
;p∗)

∞(
qaij z

w
;p

)
∞

(
pq−aij w

z
;p

)
∞

(
q−aij z

w
;p∗)

∞
(
p∗qaij w

z
;p∗)

∞
�+

j (w)�+
i (z)

= �p

(
q−aij z

w

)
�p∗

(
qaij z

w

)
�p

(
qaij z

w

)
�p∗

(
q−aij z

w

)�+
j (w)�+

i (z).

The commutation relations (2.17)–(2.24) can be verified in the same way. �

Corollary 1. �±
i (z), ei(z) and fi(z) (i = 1, . . . , N − 1) defined above realize the elliptic

currents of Uq(ŝlN ) with level k = c.

Actually, in the p → 0 limit, �±
i (z), ei(z) and fi(z) (i = 1, . . . , N − 1) give a new free

field representation of Uq(ŝlN ), which is different from that in subsection 3.1. More precisely,
as p → 0 (or r → ∞):

�+
i (z) → (ψi

−(qkz))−1, �−
i (z) → (

ψi
+(q

kz)
)−1

,

ei(z) → q−hi (ψi
−(qk/2z))−1e+,i (z), fi(z) → e−,i (z)qhi

(
ψi

+(q
k/2z)

)−1
,

here

hi =
i∑

l=1

(
p

l,i+1
b − p

l,i
b

)
+ pi

a +
N∑

l=i+1

(
p

i,l
b − p

i+1,l
b

)
, (3.18)

which has a lot of useful properties. And we will discuss them and apply them in the following
sections.

3.3. Free field realization of Uq,p(ŝlN )

The second step of the construction is presented in this subsection. We will construct the free
boson realization of the total currents. In order to do that, we need to introduce a Heisenberg
algebra H generated by p̂i and q̂i (1 � i � N − 1) such that

[q̂i , p̂j ] = aij

2
and they commute with ai (1 � i � N − 1), bij and cij (1 � i < j � N).

13
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With them we define the fields H±
i (u), Ei(u) and Fi(u) (i = 1, . . . , N − 1) by

H±
i (u) = �±

i (z) e2q̂i q∓hi
(
q±(r− k

2 )z
) (p̂i +hi−1)

r
− (p̂i−1)

r∗ , (3.19)

Ei(u) = ei(z) e2q̂i z− (p̂i−1)

r∗ (3.20)

Fi(u) = fi(z)z
(hi +p̂i−1)

r , (3.21)

where hi is given by (3.18). Then (3.19)–(3.21) define a homomorphism from Uq,p(ŝlN ) to
Ĥq,k ⊗ H . Here we have the following lemma about h′

i s.

Lemma 2. For i, j = 1, . . . , N − 1, the following commutation relations between hi and the
fields in (3.14)–(3.17) hold:[

hi,�
±
j (z)

] = 0,

[hi, ej (z)] = aij ej (z),

[hi, fj (z)] = −aijfj (z).

This lemma can easily be verified by using the Hausdorff formula, and they are the useful
properties that h′

i s possess, which we mentioned at the end of the above subsection. Then we
obtain the main theorem by applying lemma 2 and theorem 1

Theorem 2. The fields given by (3.19)–(3.21) with k = c obey the commutation relations
(2.25)–(2.33).

Corollary 2. H±
i (u), Ei(u) and Fi(u) (i = 1, . . . , N − 1) defined above give the free boson

realization of Uq,p(ŝlN ) with given level k = c.

4. Screening currents

In the free field approach, one has to discuss two necessary ingredients: screening currents
and vertex operators. We will only consider the screening currents of the elliptic quantum
algebra Uq,p(ŝlN ) in this section. In 2D CFT, screening current is a primary field of the
energy–momentum tensor with conformal weight 1, and its integration gives the screening
charge. It has the property that it commutes with the currents modulo a total differential of a
certain field. This property ensures that the screening charge may be inserted in the correlators
by changing their conformal charges without affecting their conformal properties. In this
section, using the bosons ai (1 � i � N − 1), bij and cij (1 � i < j � N), we will construct
a series of screening currents Si(z) (1 � i � N − 1) of Uq,p(ŝlN ). These currents commute
with the currents modulo a total q-difference of some fields, so they could be regarded as a
quantum deformation of the screening currents in 2D CFT.

We denote a sort of q-difference operator with a parameter n ∈ Z>0 by

n∂zX(z) ≡ X(qnz) − X(q−nz)

(q − q−1)z
,

which is called a total q-difference of a function X(z). It is exactly as a symmetrized version of
the Jackson’s derivative [46]. Its physical foundations were introduced by Biedenharn [47] and
Macferlane [48], in connection with the construction of the unitary quantum algebra SUq(2).
Such type of difference operators are also important in the investigations of non-extensive

14
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entropy formulations [49]. Moreover, to eliminate the total q-difference, one can define the
Jackson integral as∫ s∞

0
X(z) dpz ≡ s(1 − p)

∑
n∈Z

X(spn)pn

for a scalar s ∈ C\{0} and a complex number p such that |p| < 1. So that,∫ s∞

0
(n∂zX(z)) dpz = 0,

if it is convergent and we take p = q2n.
For simplicity, we set boson fields Ai

±(L1, . . . , Ls;M1, . . . ,Ms+1|z;α) (i = 1, . . . ,

N − 1) for α ∈ C with parameters Li and Mj (i, j ∈ N) as follows:

Ai
+(L1, . . . , Ls;M1, . . . ,Ms+1|z;α) =

∑
n>0

[L1n] · · · [Lsn]

[M1n] · · · [Ms+1n]
ai

n(q
αz)−n,

Ai
−(L1, . . . , Ls;M1, . . . ,Ms+1|z;α) =

∑
n>0

[L1n] · · · [Lsn]

[M1n] · · · [Ms+1n]
ai

−n(q
αz)n,

then in terms of these boson fields and those introduced before, we express the screening
currents Si(z) (i = 1, . . . , N − 1) as

Si(z) = −1

(q − q−1)z
: exp

{
Ai

−

(
−(k + h∨)|z;−k + h∨

2

)
+ Ai

+

(
k + h∨|z; k + h∨

2

)
− 1

k + h∨
(
qi

a + pi
a ln z

)}
:

{
N∑

j=i+1

: exp((b + c)i+1,j (qN−j z))

× (
exp

(−b
i,j
− (qN−j z) − (b + c)i,j (qN−j+1z)

)
− exp

(−b
i,j
+ (qN−j z) − (b + c)i,j (qN−j−1z)

))
× exp

(
N∑

l=j+1

(b
i+1,l
− (qN−l+1z) − b

i,l
− (qN−lz))

)
:

}
,

and they possess the following properties.

Theorem 3. Si(z) and the fields in (3.19)–(3.21) satisfy the relations

H±
i (z)Sj (w) = Sj (w)H±

i (z) = O(1),

Ei(z)S
j (w) = Sj (w)Ei(z) = O(1),

Fi(z)S
j (w) = Sj (w)Fi(z) = δij

(k+h∨)∂w

[
1

z − w
S̃i(z)

]
+ O(1),

Si(z)Sj (w) = θk+h∨
(
u − v + aij

2

)
θk+h∨

(
u − v − aij

2

)Sj (w)Si(z),

where the symbol O(1) means regularity and S̃i (z) (i = 1, . . . , N − 1) are given by

S̃i (z) =: exp

{
Ai

−

(
−(k + h∨)|z; k + h∨

2

)
+ Ai

+

(
k + h∨|z;−k + h∨

2

)

− 1

k + h∨
(
qi

a + pi
a ln z

)}
D−

i (z; r, r∗)z
(hi +p̂i−1)

r : .
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It is obvious to note that since these screening currents do not contain the parameter
p, they are also the screening currents of the quantum affine algebra Uq(ŝlN ). As a result,
the above theorem can easily be proved by applying the results in [32]. Once we give the
explicit expressions of the screening currents, we can calculate the cohomology and study the
irreducibility of modules of the algebra, which we will discuss separately in the future.

5. Vertex operators

In this section, except for the screening currents, we will study the other important object that
one has to discuss in the free field approach: vertex operators (VOs) of Uq,p(ŝlN ). In the
WZW model, the primary fields could be realized as the highest weight representation of the
Kac–Moody algebra, which are commonly called as vertex operators (VOs) or intertwining
operators. For the quantum affine algebra, in [16], the authors defined q-deformed VOs
as certain intertwining operators, which could be regarded as the quantum counterpart of
the primary field in 2D CFT. They play crucial roles in calculating correlation functions.
Following this approach, in this section we will construct the free field realization of the VOs
of Uq,p(ŝlN ). There are two types of them: the type I VOs and the type II VOs. They can all
be viewed as the elliptic analogs of the primary fields. The explicit expressions of them are
obtained by twisting the corresponding ones of the quantum affine algebra Uq(ŝlN ), in which
the type II VOs are not given before. In fact, even for the classical affine Lie algebras, the
type II VOs are not given. In this section, we will give the type II VOs of Uq(ŝlN ) and then
use it to construct that of Uq,p(ŝlN ).

5.1. The type I and type II VOs of Uq(ŝlN )

In this subsection, we first review the primary field of the quantum affine algebra Uq(ŝlN ) given
in [32], which is the type I VOs of it. Here we denote it as φ ��(z) with �� = (λ1, . . . , λN−1),
where �� is the weight of the classical affine Lie algebra. However, we will reexpress it by
using some new bosons {ǎi : i = 1, . . . , N − 1} defined as

ǎi
n =

N−1∑
j=1

n
[min(i, j)n][(N − max(i, j))n]

[(k + h∨)n][Nn][n]2
aj

n

for any n ∈ Z�=0, and the zero modes are

p̌i
a =

N−1∑
j=1

min(i, j)(N − max(i, j))

(k + h∨)N
pj

a,

q̌i
a =

N−1∑
j=1

min(i, j)(N − max(i, j))

(k + h∨)N
qj

a ,

here these bosons can be called the dual bosons of the original ones {ai : i = 1, . . . , N − 1}
in the sense that they satisfy the relations below:[

ǎi
n, a

j
m

] = δi,j δn+m,0,[
p̌i

a, q
j
a

] = δi,j ,[
q̌i

a, p
j
a

] = −δi,j ,
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and these relations can be verified easily by using the q-analog of the inverse of the Cartan
matrix:

N−1∑
r=1

[ai,rn][min(r, j)n][(N − max(r, j))n]

[Nn][n]2
= δi,j . (5.1)

With them, the type I VOs φ ��(z) with weight �� = (λ1, . . . , λN−1) of the algebra Uq(ŝlN )

can be rewritten as

φ ��(z) =:
N−1∏
i=1

φλi (z) :,

here the fields φλi (z) for i = 1, . . . , N − 1, which are called the components of φ ��(z), are
given by

φλi (z) = exp

{
−

∑
n>0

[λin]

n
ǎi

−nq
k+h∨

2 nzn

}
exp

{
λi

(
q̌i

a + p̌i
a ln z

)}
× exp

{
−

∑
n>0

[λin]

n
ǎi

nq
k+h∨

2 nz−n

}
;

and it has the following properties with the fields ψi
±(z) and e±,i (z) (i = 1, . . . , N − 1) given

by (3.1)–(3.3) [32]

ψi
±(z)φ ��(w) = q−λi w − qλi∓ k

2 z

w − q−λi∓ k
2 z

φ ��(w)ψi
±(z); (5.2)

e+,i (z)φ ��(w) = φ ��(w)e+,i (z); (5.3)

e−,i (z)φ ��(w) = q−λi w − qλi

z

w − q−λi
z
φ ��(w)e−,i (z). (5.4)

For any weight �� = (λ1, . . . , λN−1), the type II VOs ψ ��(z) of Uq(ŝlN ) are not known before.
We present them in terms of {bi,j , ci,j : 1 � i < j � N − 1} and the above-mentioned dual
bosons. The field ψ ��(z) can be expressed as

ψ ��(z) =:
N−1∏
i=1

ψλi (z) :

here its components ψλi (z) are defined as

ψλi (z) = exp

{
−

∑
n>0

[λN−in]

n
ǎi

−nq
− k+h∨

2 nzn

}
exp

{
λN−i

(
q̌i

a + p̌i
a ln z

)}
× exp

{
−

∑
n>0

[λN−in]

n
ǎi

nq
− k+h∨

2 nz−n

}

× exp

{∑
n>0

N∑
j=i+1

[λj−in]

[n]2

(
b

i,j
−n + c

i,j
−n

)
zn

}

× exp

{
N∑

j=i+1

λj−i
(
q

i,j

b + qi,j
c + (p

i,j

b + pi,j
c ) ln z

)}

× exp

{
−

∑
n>0

N∑
j=i+1

[λj−in]

[n]2

(
bi,j

n + ci,j
n

)
z−n

}
.
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Furthermore, we have also proved the following theorem.

Theorem 4. The field ψ ��(z) satisfies the intertwining relations

ψi
±(z)ψ ��(w) = qλi w − q−λi± k

2 z

w − qλi± k
2 z

ψ ��(w)ψi
±(z),

e+,i (z)ψ ��(w) = qλi w − q−λi

z

w − qλi
z

ψ ��(w)e+,i (z),

e−,i (z)ψ ��(w) = ψ ��(w)e−,i (z),

where ψi
±(z) and e±,i (z) for i = 1, . . . , N − 1 are the currents given by (3.1)–(3.3).

Proof. Here we only list the useful formulae we used to prove this theorem:

eAB = e[A,B]BeA, if [A,B] is a constant;
eAeB = e[A,B]eBeA, if [A,B] commute with A and B;

exp

(
−

∑
n>0

xn

n

)
= 1 − x;

(1 − x)−1 =
∑
n�0

xn;

and the q-analog of the inverse of the Cartan matrix in (5.1) is also used. �

These intertwining relations could be used to characterize the type II VOs of Uq(ŝlN ).
Lastly, we present the commutation relations among the type I VOs φ ��(z) and type II VOs
ψ ��(z); and here we only compute the commutation relations between their components.

Proposition 3.

φλi (z)φλj (w) =
(

z

w

)λiλj gi,j

exp

{
X1

(
z

w

)}
exp{−X1(z ↔ w)}φλj (w)φλi (z);

φλi (z)ψλj (w) =
(

z

w

)λiλN−j gi,j

exp

{
X2

(
z

w

)}
exp{−X2(z ↔ w)}ψλj (w)φλi (z);

ψλi (z)ψλj (w) =
(

z

w

)λN−iλN−j gi,j

exp

{
X3

(
z

w

)}
exp{−X3(z ↔ w)}ψλj (w)ψλi (z),

here Xi

(
z
w

)
for i = 1, 2, 3 are given by

X1

(
z

w

)
=

∑
n>0

1

n

[λin][λjn]

[n]2

[
gi,j

n

]
q(k+h∨)n

(
z

w

)n

;

X2

(
z

w

)
=

∑
n>0

1

n

[λin][λN−jn]

[n]2

[
gi,j

n

]( z

w

)n

;

X3

(
z

w

)
=

∑
n>0

1

n

[λN−in][λN−jn]

[n]2

[
gi,j

n

]
q−(k+h∨)n

(
z

w

)n

,

where for simplicity we use the symbols gi,j and
[
g

i,j
n

]
to denote

gi,j = min(i, j)(N − max(i, j))

(k + h∨)N
, (5.5)
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gi,j

n

] = [min(i, j)n][(N − max(i, j))n]

[(k + h∨)n][Nn]
. (5.6)

It should be remarked that the matrix G = (gi,j )1�i,j�N−1 is the inverse matrix of (k + h∨)A,
and here A is the Cartan matrix.

5.2. The type I and type II VOs of Uq,p(ŝlN )

In this subsection, we will give the free field realization of the type I and type II VOs of
Uq,p(ŝlN ). We nominate them as � ��(u) and � ��(u) with weight �� = (λ1, . . . , λN−1). They
are all obtained by twisting the corresponding ones of Uq(ŝlN ) given in the above subsection.

First, we will construct two twisted currents T±(z;p) which depend on the parameter p
for the two types VOs of Uq(ŝlN ). For the type I VOs, we define the twisted current T+(z;p)

as

T+(z;p) =:
N−1∏
i=1

T i
+(z;p) :

and for i = 1, . . . , N − 1,

T i
+(z;p) = exp

{∑
n>0

1

n

[λin][kn]

[rn]
Ȟ i

nq
(r− k

2 )nz−n

}
exp

{
−λi

r

(
p̌i + ȟi − (k + h∨)p̌i

a

)
ln z

}
here

Ȟ i
n =

N−1∑
j=1

n
[min(i, j)n][(N − max(i, j))n]

[kn][Nn][n]2
Hj

n , ∀ n ∈ Z�=0 (5.7)

and

Hi
n =

i∑
j=1

(
bj,i+1

n q−( k
2 +j−1)|n| − bj,i

n q−( k
2 +j)|n|) + ai

nq
− h∨

2 |n|

+
N∑

j=i+1

(
bi,j

n q−( k
2 +j)|n| − bi+1,j

n q−( k
2 +j−1)|n|),

then it is easy to verify that the following relation holds:[
Ȟ i

n,H
j
m

] = δi,j δn+m,0,

since we have the following commutation relation:[
Hi

n,H
j
m

] = [aijn][kn]

n
δn+m,0;

moreover, the symbols ȟi and p̌i are used to denote the following complicated ones:

ȟi =
N−1∑
j=1

min(i, j)(N − max(i, j))

N
hj ,

p̌i =
N−1∑
j=1

min(i, j)(N − max(i, j))

N
p̂j ,

and p̌i
a was defined at the beginning of the above subsection. And for the type II VOs, the

twisted current T−(z;p) is given by

T−(z;p) =:
N−1∏
i=1

T i
−(z;p) :
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and

T i
−(z;p) = exp

{∑
n>0

1

n

[λin][kn]

[r∗n]
Ȟ i

−nq
(r− k

2 )nzn

}
exp

{
−2λiq̌i +

λi

r∗ p̌i ln z

}
,

here Ȟ i
−n for n > 0 is given by (5.7) and the symbol q̌i is defined as follows:

q̌i =
N−1∑
j=1

min(i, j)(N − max(i, j))

N
q̂j .

Next, we can use the components T i
±(z;p) of the twisted currents to twist the ones φλi (z)

and ψλi (z) as follows:

�λi (u) =: φλi (z)T i
+(z;p) :,

�λi (u) =: T i
−(z;p)ψλi (z) :,

here �λi (u) and �λi (u) could also be considered as the components of the fields � ��(u) and
� ��(u), since we define � ��(u) and � ��(u) by

� ��(u) =:
N−1∏
i=1

�λi (u) :,

� ��(u) =:
N−1∏
i=1

�λi (u) : .

Furthermore, we obtain an important theorem by applying the relations (5.2)–(5.4) and
theorem 4.

Theorem 5. The fields � ��(u) and � ��(u) with given weight �� = (λ1, . . . , λN−1) possess
the intertwining properties

H±
i (u)� ��(v) = θr

(
u − v + λi

2 ∓ k
4

)
θr

(
u − v − λi

2 ∓ k
4

)� ��(v)H±
i (u), (5.8)

Ei(u)� ��(v) = � ��(v)Ei(u), (5.9)

Fi(u)� ��(v) = θr

(
u − v + λi

2

)
θr

(
u − v − λi

2

)� ��(v)Fi(u); (5.10)

H±
i (u)� ��(v) = θr∗

(
u − v − λi

2 ± k
4

)
θr∗

(
u − v + λi

2 ± k
4

) � ��(v)H±
i (u), (5.11)

Ei(u)� ��(v) = θr∗
(
u − v − λi

2

)
θr∗

(
u − v + λi

2

) � ��(v)Ei(u), (5.12)

Fi(u)� ��(v) = � ��(v)Fi(u), (5.13)

where H±
i (u), Ei(u) and Fi(u) (i = 1, . . . , N − 1) are the total currents in (3.19)–(3.21).

The above relations (5.8)–(5.13) could be used to define the VOs of the elliptic quantum
algebra Uq,p(ŝlN ). As a result, we actually gave the free field realization of the type I and
type II VOs of Uq,p(ŝlN ) with given level k. Lastly, we also investigate the commutation
relations among the VOs � ��(u) and � ��(u).
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Proposition 4. For the components �λi (z) and �λi (z) of the type I VOs and type II VOs, we
have the following relations:

�λi (z)�λj (w) =
(

z

w

)λiλj gi,j

exp

{
Y1

(
z

w

)}
exp{−Y1(z ↔ w)}�λj (w)�λi (z),

�λi (z)�λj (w) =
(

z

w

)λiλN−j gi,j

exp

{
−λi(k + g)

r
(λjgi,j + Ci,j ) ln z

}
× exp

{
(X2 + Y2 + Y3 + Y4)

(
z

w

)}
exp{−X2(z ↔ w)}�λj (w)�λi (z),

�λi (z)�λj (w) =
(

z

w

)λN−iλN−j gi,j

exp

{
(X3 + Y5 + Y6)

(
z

w

)}
× exp{−(X3 + Y5 + Y6)(z ↔ w; i ↔ j)}�λj (w)�λi (z),

here gi,j is given in (5.5); and the symbols Ci,j ,
{
Yi

(
z
w

)
: i = 1, . . . , 6

}
are used to simplify

the complicated ones given below:

Ci,j = −
N−1∑
l=j

λl+1−j gi,l +
N−1∑
l=j+1

λl−j gi,l −
(

N∑
l=j+1

λl−j

)
gi,j +

(
N∑

l=j+1

λl−j

)
gi,j−1;

Y1

(
z

w

)
= −

∑
n>0

1

n

[λin][λjn][(r − k − h∨)n]

[rn][n]2

[
gi,j

n

]
q(r+k+h∨)n

(
z

w

)n

,

Y2

(
z

w

)
= −

∑
n>0

1

n

[λin][λjn][(k + h∨)n]

[rn][n]2

[
gi,j

n

]
q(r−k)n

(
z

w

)n

,

Y3

(
z

w

)
= −

∑
n>0

1

n

[λin][λN−j n][(k + h∨)n]

[rn][n]2

[
gi,j

n

]
q(r−k−h∨)n

(
z

w

)n

,

Y4

(
z

w

)
= −

∑
n>0

1

n

[λin][(k + h∨)n]

[rn][n]2

[
gi,j

n

]
[Ci,j ]q(r−k/2)n

(
z

w

)n

,

Y5

(
z

w

)
= −

∑
n>0

1

n

[λN−in][λjn][(k + h∨)n]

[r∗n][n]2

[
gi,j

n

]
q(r−k−h∨)n

(
z

w

)n

,

Y6

(
z

w

)
= −

∑
n>0

1

n

[λjn][(k + h∨)n]

[r∗n][n]2

[
gi,j

n

]
([Ci,j ](i ↔ j))q(r−k/2)n

(
z

w

)n

,

in which
[
g

i,j
n

]
is given by (5.6) and [Ci,j ] is defined by

[Ci,j ] = −
(

N−1∑
l=j

[λl+1−j n]
[
gi,l

n

])
q−(k/2+j−1)n +

(
N−1∑
l=j+1

[λl−jn]
[
gi,l

n

])
q−(k/2+j)n

−
(

N∑
l=j+1

[λl−j n]q−(k/2+l)n

)[
gi,j

n

]
+

(
N∑

l=j+1

[λl−j n]q−(k/2+l−1)n

)[
gi,j−1

n

]
.

6. Discussion

In this paper, we construct the free field representation of Uq,p(ŝlN ) with given level k by
twisting the Wakimoto realization of the quantum affine algebra Uq(ŝlN ). The free boson
realization of its screening currents is also given. Moreover, the explicit expressions of the
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type II VOs of Uq(ŝlN ) and the two types VOs of Uq,p(ŝlN ) are presented. In fact, even for the
classical affine Lie algebras, the type II VOs are not given. We also have much interests in the
derivation of the multi-point correlation functions, but in view of its complexity and the length
of the manuscript, it will be discussed in the future. Meanwhile, it is also very interesting to
extend our results to other types of Lie algebras, and we will discuss them in a separate paper.
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